A fixed point theorem in a lattice ordered semigroup cone valued cone metric spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A common fixed point theorem on ordered metric spaces

A common fixed point result for weakly increasing mappings satisfying generalized contractive type of Zhang in ordered metric spaces are derived.

متن کامل

A Common Fixed Point Theorem in Cone Metric Spaces 1

In this paper, we prove a common fixed point theorem for a sequence of mappings in cone metric spaces. This result offers a generalization of Huang and Zhang’ theorem in [11]. An example to support our result is presented. Mathematics Subject Classification: 54E40; 54E35; 54H25

متن کامل

Generalization of a Fixed Point Theorem in Cone Metric Spaces

Let P be a subset of a Banach space E and P is normal and regular cone on E, we prove the existence of the fixed point for multivalued maps in cone metric spaces and these theorems generalize the Bose and Mukerjee results and the results of varies authors.

متن کامل

A Fixed Point Theorem for Correspondences on Cone Metric Spaces

In this paper, we prove that if f is a contractive closed-valued correspondence on a cone metric space (X, d) and there is a contractive orbit {xn} for f at x0 ∈ X such that both {xni} and {xni+1} converge for some subsequence {xni} of {xn}, then f has a fixed point, which generalizes a fixed point theorem for contractive closed-valued correspondences from metric spaces to cone metric spaces.

متن کامل

Common Fixed Point Result in Ordered Cone Metric Spaces

Fixed point and common fixed point results for generlized contractive mappings are obtianed in ordered cone metric spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2013

ISSN: 2008-1901

DOI: 10.22436/jnsa.006.04.06